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The Fetch and Execute Cycle: Machine Language 

 

A COMPUTER IS A COMPLEX SYSTEM consisting of many different components. But at the 

heart -- or the brain, if you want -- of the computer is a single component that does the actual 

computing. This is the Central Processing Unit, or CPU. In a modern desktop computer, the CPU 

is a single "chip" on the order of one square inch in size. The job of the CPU is to execute 

programs. 

A program is simply a list of unambiguous instructions meant to be followed mechanically by a 

computer. A computer is built to carry out instructions that are written in a very simple type of 

language called machine language. Each type of computer has its own machine language, and the 

computer can directly execute a program only if the program is expressed in that language. (It 

can execute programs written in other languages if they are first translated into machine 

language.) 

When the CPU executes a program, that program is stored in the computer's main memory (also 

called the RAM or random access memory). In addition to the program, memory can also hold 

data that is being used or processed by the program. Main memory consists of a sequence of 

locations. These locations are numbered, and the sequence number of a location is called its 

address. An address provides a way of picking out one particular piece of information from 

among the millions stored in memory. When the CPU needs to access the program instruction or 

data in a particular location, it sends the address of that information as a signal to the memory; 

the memory responds by sending back the data contained in the specified location. The CPU can 

also store information in memory by specifying the information to be stored and the address of 

the location where it is to be stored. 

On the level of machine language, the operation of the CPU is fairly straightforward (although it 

is very complicated in detail). The CPU executes a program that is stored as a sequence of 
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machine language instructions in main memory. It does this by repeatedly reading, or fetching, 

an instruction from memory and then carrying out, or executing, that instruction. This process -- 

fetch an instruction, execute it, fetch another instruction, execute it, and so on forever -- is called 

the fetch-and-execute cycle. With one exception, which will be covered in the next section, this 

is all that the CPU ever does. 

The details of the fetch-and-execute cycle are not terribly important, but there are a few basic 

things you should know. The CPU contains a few internal registers, which are small memory 

units capable of holding a single number or machine language instruction. The CPU uses one of 

these registers -- the program counter, or PC -- to keep track of where it is in the program it is 

executing. The PC simply stores the memory address of the next instruction that the CPU should 

execute. At the beginning of each fetch-and-execute cycle, the CPU checks the PC to see which 

instruction it should fetch. During the course of the fetch-and-execute cycle, the number in the 

PC is updated to indicate the instruction that is to be executed in the next cycle. (Usually, but not 

always, this is just the instruction that sequentially follows the current instruction in the 

program.) 

 

A computer executes machine language programs mechanically -- that is without understanding 

them or thinking about them -- simply because of the way it is physically put together. This is 

not an easy concept. A computer is a machine built of millions of tiny switches called transistors, 

which have the property that they can be wired together in such a way that an output from one 

switch can turn another switch on or off. As a computer computes, these switches turn each other 

on or off in a pattern determined both by the way they are wired together and by the program that 

the computer is executing. 

Machine language instructions are expressed as binary numbers. A binary number is made up of 

just two possible digits, zero and one. Each zero or one is called a bit. So, a machine language 

instruction is just a sequence of zeros and ones. Each particular sequence encodes some 

particular instruction. The data that the computer manipulates is also encoded as binary numbers. 

In modern computers, each memory location holds a byte, which is a sequence of eight bits. (A 

machine language instruction or a piece of data generally consists of several bytes, stored in 

consecutive memory locations.)  

A computer can work directly with binary numbers because switches can readily represent such 

numbers: Turn the switch on to represent a one; turn it off to represent a zero. Machine language 

instructions are stored in memory as patterns of switches turned on or off. When a machine 

language instruction is loaded into the CPU, all that happens is that certain switches are turned 

on or off in the pattern that encodes that instruction. The CPU is built to respond to this pattern 

by executing the instruction it encodes; it does this simply because of the way all the other 

switches in the CPU are wired together. 

So, you should understand this much about how computers work: Main memory holds machine 

language programs and data. These are encoded as binary numbers. The CPU fetches machine 

language instructions from memory one after another and executes them. It does this 

http://math.hws.edu/javanotes/c1/s2.html


mechanically, without thinking about or understanding what it does -- and therefore the program 

it executes must be perfect, complete in all details, and unambiguous because the CPU can do 

nothing but execute it exactly as written. Here is a schematic view of this first-stage 

understanding of the computer: 

 

Asynchronous Events: Polling Loops and Interrupts 

 

THE CPU SPENDS ALMOST ALL of its time fetching instructions from memory and 

executing them. However, the CPU and main memory are only two out of many components in a 

real computer system. A complete system contains other devices such as: 

 A hard disk or solid state drive for storing programs and data files. (Note that main memory 
holds only a comparatively small amount of information, and holds it only as long as the power 
is turned on. A hard disk or solid state drive is used for permanent storage of larger amounts of 
information, but programs have to be loaded from there into main memory before they can 
actually be executed. A hard disk stores data on a spinning magnetic disk, while a solid state 
drive is a purely electronic device with no moving parts.) 

 A keyboard and mouse for user input. 
 A monitor and printer which can be used to display the computer's output. 
 An audio output device that allows the computer to play sounds. 
 A network interface that allows the computer to communicate with other computers that are 

connected to it on a network, either wirelessly or by wire. 
 A scanner that converts images into coded binary numbers that can be stored and manipulated 

on the computer. 

The list of devices is entirely open ended, and computer systems are built so that they can easily 

be expanded by adding new devices. Somehow the CPU has to communicate with and control all 

these devices. The CPU can only do this by executing machine language instructions (which is 



all it can do, period). The way this works is that for each device in a system, there is a device 

driver, which consists of software that the CPU executes when it has to deal with the device. 

Installing a new device on a system generally has two steps: plugging the device physically into 

the computer, and installing the device driver software. Without the device driver, the actual 

physical device would be useless, since the CPU would not be able to communicate with it. 

 

A computer system consisting of many devices is typically organized by connecting those 

devices to one or more busses. A bus is a set of wires that carry various sorts of information 

between the devices connected to those wires. The wires carry data, addresses, and control 

signals. An address directs the data to a particular device and perhaps to a particular register or 

location within that device. Control signals can be used, for example, by one device to alert 

another that data is available for it on the data bus. A fairly simple computer system might be 

organized like this: 

 

Now, devices such as keyboard, mouse, and network interface can produce input that needs to be 

processed by the CPU. How does the CPU know that the data is there? One simple idea, which 

turns out to be not very satisfactory, is for the CPU to keep checking for incoming data over and 

over. Whenever it finds data, it processes it. This method is called polling, since the CPU polls 

the input devices continually to see whether they have any input data to report. Unfortunately, 

although polling is very simple, it is also very inefficient. The CPU can waste an awful lot of 

time just waiting for input. 

To avoid this inefficiency, interrupts are generally used instead of polling. An interrupt is a 

signal sent by another device to the CPU. The CPU responds to an interrupt signal by putting 

aside whatever it is doing in order to respond to the interrupt. Once it has handled the interrupt, it 

returns to what it was doing before the interrupt occurred. For example, when you press a key on 

your computer keyboard, a keyboard interrupt is sent to the CPU. The CPU responds to this 



signal by interrupting what it is doing, reading the key that you pressed, processing it, and then 

returning to the task it was performing before you pressed the key. 

Again, you should understand that this is a purely mechanical process: A device signals an 

interrupt simply by turning on a wire. The CPU is built so that when that wire is turned on, the 

CPU saves enough information about what it is currently doing so that it can return to the same 

state later. This information consists of the contents of important internal registers such as the 

program counter. Then the CPU jumps to some predetermined memory location and begins 

executing the instructions stored there. Those instructions make up an interrupt handler that does 

the processing necessary to respond to the interrupt. (This interrupt handler is part of the device 

driver software for the device that signaled the interrupt.) At the end of the interrupt handler is an 

instruction that tells the CPU to jump back to what it was doing; it does that by restoring its 

previously saved state. 

Interrupts allow the CPU to deal with asynchronous events. In the regular fetch-and-execute 

cycle, things happen in a predetermined order; everything that happens is "synchronized" with 

everything else. Interrupts make it possible for the CPU to deal efficiently with events that 

happen "asynchronously," that is, at unpredictable times. 

As another example of how interrupts are used, consider what happens when the CPU needs to 

access data that is stored on a hard disk. The CPU can access data directly only if it is in main 

memory. Data on the disk has to be copied into memory before it can be accessed. 

Unfortunately, on the scale of speed at which the CPU operates, the disk drive is extremely slow. 

When the CPU needs data from the disk, it sends a signal to the disk drive telling it to locate the 

data and get it ready. (This signal is sent synchronously, under the control of a regular program.) 

Then, instead of just waiting the long and unpredictable amount of time that the disk drive will 

take to do this, the CPU goes on with some other task. When the disk drive has the data ready, it 

sends an interrupt signal to the CPU. The interrupt handler can then read the requested data. 

 

Now, you might have noticed that all this only makes sense if the CPU actually has several tasks 

to perform. If it has nothing better to do, it might as well spend its time polling for input or 

waiting for disk drive operations to complete. All modern computers use multitasking to perform 

several tasks at once. Some computers can be used by several people at once. Since the CPU is 

so fast, it can quickly switch its attention from one user to another, devoting a fraction of a 

second to each user in turn. This application of multitasking is called timesharing. But a modern 

personal computer with just a single user also uses multitasking. For example, the user might be 

typing a paper while a clock is continuously displaying the time and a file is being downloaded 

over the network. 

Each of the individual tasks that the CPU is working on is called a thread. (Or a process; there 

are technical differences between threads and processes, but they are not important here, since it 

is threads that are used in Java.) Many CPUs can literally execute more than one thread 

simultaneously -- such CPUs contain multiple "cores," each of which can run a thread -- but 

there is always a limit on the number of threads that can be executed at the same time. Since 



there are often more threads than can be executed simultaneously, the computer has to be able 

switch its attention from one thread to another, just as a timesharing computer switches its 

attention from one user to another. In general, a thread that is being executed will continue to run 

until one of several things happens: 

 The thread might voluntarily yield control, to give other threads a chance to run. 
 The thread might have to wait for some asynchronous event to occur. For example, the thread 

might request some data from the disk drive, or it might wait for the user to press a key. While it 
is waiting, the thread is said to be blocked, and other threads, if any, have a chance to run. 
When the event occurs, an interrupt will "wake up" the thread so that it can continue running. 

 The thread might use up its allotted slice of time and be suspended to allow other threads to 
run. Not all computers can "forcibly" suspend a thread in this way; those that can are said to use 
preemptive multitasking. To do preemptive multitasking, a computer needs a special timer 
device that generates an interrupt at regular intervals, such as 100 times per second. When a 
timer interrupt occurs, the CPU has a chance to switch from one thread to another, whether the 
thread that is currently running likes it or not. All modern desktop and laptop computers, and 
even typical smartphones and tablets, use preemptive multitasking. 

Ordinary users, and indeed ordinary programmers, have no need to deal with interrupts and 

interrupt handlers. They can concentrate on the different tasks or threads that they want the 

computer to perform; the details of how the computer manages to get all those tasks done are not 

important to them. In fact, most users, and many programmers, can ignore threads and 

multitasking altogether. However, threads have become increasingly important as computers 

have become more powerful and as they have begun to make more use of multitasking and 

multiprocessing. In fact, the ability to work with threads is fast becoming an essential job skill 

for programmers. Fortunately, Java has good support for threads, which are built into the Java 

programming language as a fundamental programming concept. Programming with threads will 

be covered in Chapter 12. 

Just as important in Java and in modern programming in general is the basic concept of 

asynchronous events. While programmers don't actually deal with interrupts directly, they do 

often find themselves writing event handlers, which, like interrupt handlers, are called 

asynchronously when specific events occur. Such "event-driven programming" has a very 

different feel from the more traditional straight-through, synchronous programming. We will 

begin with the more traditional type of programming, which is still used for programming 

individual tasks, but we will return to threads and events later in the text, starting in Chapter 6  

 

By the way, the software that does all the interrupt handling, handles communication with the 

user and with hardware devices, and controls which thread is allowed to run is called the 

operating system. The operating system is the basic, essential software without which a computer 

would not be able to function. Other programs, such as word processors and Web browsers, are 

dependent upon the operating system. Common operating systems include Linux, various 

versions of Windows, and Mac  
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The Java Virtual Machine 

 

MACHINE LANGUAGE CONSISTS of very simple instructions that can be executed directly 

by the CPU of a computer. Almost all programs, though, are written in high-level programming 

languages such as Java, Fortran, or C++. A program written in a high-level language cannot be 

run directly on any computer. First, it has to be translated into machine language. This translation 

can be done by a program called a compiler. A compiler takes a high-level-language program 

and translates it into an executable machine-language program. Once the translation is done, the 

machine-language program can be run any number of times, but of course it can only be run on 

one type of computer (since each type of computer has its own individual machine language). If 

the program is to run on another type of computer it has to be re-translated, using a different 

compiler, into the appropriate machine language. 

There is an alternative to compiling a high-level language program. Instead of using a compiler, 

which translates the program all at once, you can use an interpreter, which translates it 

instruction-by-instruction, as necessary. An interpreter is a program that acts much like a CPU, 

with a kind of fetch-and-execute cycle. In order to execute a program, the interpreter runs in a 

loop in which it repeatedly reads one instruction from the program, decides what is necessary to 

carry out that instruction, and then performs the appropriate machine-language commands to do 

so. 

One use of interpreters is to execute high-level language programs. For example, the 

programming language Lisp is usually executed by an interpreter rather than a compiler. 

However, interpreters have another purpose: they can let you use a machine-language program 

meant for one type of computer on a completely different type of computer. For example, one of 

the original home computers was the Commodore 64 or "C64". While you might not find an 

actual C64, you can find programs that run on other computers -- or even in a web browser -- 

that "emulate" one. Such an emulator can run C64 programs by acting as an interpreter for the 

C64 machine language. 

 

The designers of Java chose to use a combination of compilation and interpreting. Programs 

written in Java are compiled into machine language, but it is a machine language for a computer 

that doesn't really exist. This so-called "virtual" computer is known as the Java Virtual Machine, 

or JVM. The machine language for the Java Virtual Machine is called Java bytecode. There is no 

reason why Java bytecode couldn't be used as the machine language of a real computer, rather 

than a virtual computer. But in fact the use of a virtual machine makes possible one of the main 

selling points of Java: the fact that it can actually be used on any computer. All that the computer 

needs is an interpreter for Java bytecode. Such an interpreter simulates the JVM in the same way 

that a C64 emulator simulates a Commodore 64 computer. (The term JVM is also used for the 

Java bytecode interpreter program that does the simulation, so we say that a computer needs a 

JVM in order to run Java programs. Technically, it would be more correct to say that the 

interpreter implements the JVM than to say that it is a JVM.) 



Of course, a different Java bytecode interpreter is needed for each type of computer, but once a 

computer has a Java bytecode interpreter, it can run any Java bytecode program, and the same 

program can be run on any computer that has such an interpreter. This is one of the essential 

features of Java: the same compiled program can be run on many different types of computers. 

 

Why, you might wonder, use the intermediate Java bytecode at all? Why not just distribute the 

original Java program and let each person compile it into the machine language of whatever 

computer they want to run it on? There are several reasons. First of all, a compiler has to 

understand Java, a complex high-level language. The compiler is itself a complex program. A 

Java bytecode interpreter, on the other hand, is a relatively small, simple program. This makes it 

easy to write a bytecode interpreter for a new type of computer; once that is done, that computer 

can run any compiled Java program. It would be much harder to write a Java compiler for the 

same computer. 

Furthermore, some Java programs are meant to be downloaded over a network. This leads to 

obvious security concerns: you don't want to download and run a program that will damage your 

computer or your files. The bytecode interpreter acts as a buffer between you and the program 

you download. You are really running the interpreter, which runs the downloaded program 

indirectly. The interpreter can protect you from potentially dangerous actions on the part of that 

program. 

When Java was still a new language, it was criticized for being slow: Since Java bytecode was 

executed by an interpreter, it seemed that Java bytecode programs could never run as quickly as 

programs compiled into native machine language (that is, the actual machine language of the 

computer on which the program is running). However, this problem has been largely overcome 

by the use of just-in-time compilers for executing Java bytecode. A just-in-time compiler 

translates Java bytecode into native machine language. It does this while it is executing the 

program. Just as for a normal interpreter, the input to a just-in-time compiler is a Java bytecode 

program, and its task is to execute that program. But as it is executing the program, it also 

translates parts of it into machine language. The translated parts of the program can then be 

executed much more quickly than they could be interpreted. Since a given part of a program is 

often executed many times as the program runs, a just-in-time compiler can significantly speed 

up the overall execution time.  



I should note that there is no necessary connection between Java and Java bytecode. A program 

written in Java could certainly be compiled into the machine language of a real computer. And 

programs written in other languages can be compiled into Java bytecode. However, the 

combination of Java and Java bytecode is platform-independent, secure, and network-compatible 

while allowing you to program in a modern high-level object-oriented language. 

(In the past few years, it has become fairly common to create new programming languages, or 

versions of old languages, that compile into Java bytecode. The compiled bytecode programs can 

then be executed by a standard JVM. New languages that have been developed specifically for 

programming the JVM include Groovy, Clojure, and Processing. Jython and JRuby are versions 

of older languages, Python and Ruby, that target the JVM. These languages make it possible to 

enjoy many of the advantages of the JVM while avoiding some of the technicalities of the Java 

language. In fact, the use of other languages with the JVM has become important enough that 

several new features have been added to the JVM specifically to add better support for some of 

those languages. And this improvement to the JVM has in turn made possible some of the new 

features in Java 7 and Java 8.) 

Fundamental Building Blocks of Programs 

 

THERE ARE TWO BASIC ASPECTS of programming: data and instructions. To work with 

data, you need to understand variables and types; to work with instructions, you need to 

understand control structures and subroutines. You'll spend a large part of the course becoming 

familiar with these concepts. 

A variable is just a memory location (or several consecutive locations treated as a unit) that has 

been given a name so that it can be easily referred to and used in a program. The programmer 

only has to worry about the name; it is the compiler's responsibility to keep track of the memory 

location. As a programmer, you need to keep in mind that the name refers to a kind of "box" in 

memory that can hold data, even though you don't have to know where in memory that box is 

located. 

In Java and in many other programming languages, a variable has a type that indicates what sort 

of data it can hold. One type of variable might hold integers -- whole numbers such as 3, -7, and 

0 -- while another holds floating point numbers -- numbers with decimal points such as 3.14, -

2.7, or 17.0. (Yes, the computer does make a distinction between the integer 17 and the floating-

point number 17.0; they actually look quite different inside the computer.) There could also be 

types for individual characters ('A', ';', etc.), strings ("Hello", "A string can include many 

characters", etc.), and less common types such as dates, colors, sounds, or any other kind of data 

that a program might need to store. 

Programming languages always have commands for getting data into and out of variables and for 

doing computations with data. For example, the following "assignment statement," which might 

appear in a Java program, tells the computer to take the number stored in the variable named 

"principal", multiply that number by 0.07, and then store the result in the variable named 

"interest": 



interest = principal * 0.07; 

There are also "input commands" for getting data from the user or from files on the computer's 

disks, and there are "output commands" for sending data in the other direction. 

These basic commands -- for moving data from place to place and for performing computations -

- are the building blocks for all programs. These building blocks are combined into complex 

programs using control structures and subroutines. 

 

A program is a sequence of instructions. In the ordinary "flow of control," the computer executes 

the instructions in the sequence in which they occur in the program, one after the other. 

However, this is obviously very limited: the computer would soon run out of instructions to 

execute. Control structures are special instructions that can change the flow of control. There are 

two basic types of control structure: loops, which allow a sequence of instructions to be repeated 

over and over, and branches, which allow the computer to decide between two or more different 

courses of action by testing conditions that occur as the program is running. 

For example, it might be that if the value of the variable "principal" is greater than 10000, then 

the "interest" should be computed by multiplying the principal by 0.05; if not, then the interest 

should be computed by multiplying the principal by 0.04. A program needs some way of 

expressing this type of decision. In Java, it could be expressed using the following "if statement": 

if (principal > 10000) 

    interest = principal * 0.05; 

else 

    interest = principal * 0.04; 

(Don't worry about the details for now. Just remember that the computer can test a condition and 

decide what to do next on the basis of that test.) 

Loops are used when the same task has to be performed more than once. For example, if you 

want to print out a mailing label for each name on a mailing list, you might say, "Get the first 

name and address and print the label; get the second name and address and print the label; get the 

third name and address and print the label..." But this quickly becomes ridiculous -- and might 

not work at all if you don't know in advance how many names there are. What you would like to 

say is something like "While there are more names to process, get the next name and address, 

and print the label." A loop can be used in a program to express such repetition. 

 

Large programs are so complex that it would be almost impossible to write them if there were 

not some way to break them up into manageable "chunks." Subroutines provide one way to do 

this. A subroutine consists of the instructions for performing some task, grouped together as a 

unit and given a name. That name can then be used as a substitute for the whole set of 

instructions. For example, suppose that one of the tasks that your program needs to perform is to 



draw a house on the screen. You can take the necessary instructions, make them into a 

subroutine, and give that subroutine some appropriate name -- say, "drawHouse()". Then 

anyplace in your program where you need to draw a house, you can do so with the single 

command: 

drawHouse(); 

This will have the same effect as repeating all the house-drawing instructions in each place. 

The advantage here is not just that you save typing. Organizing your program into subroutines 

also helps you organize your thinking and your program design effort. While writing the house-

drawing subroutine, you can concentrate on the problem of drawing a house without worrying 

for the moment about the rest of the program. And once the subroutine is written, you can forget 

about the details of drawing houses -- that problem is solved, since you have a subroutine to do it 

for you. A subroutine becomes just like a built-in part of the language which you can use without 

thinking about the details of what goes on "inside" the subroutine. 

 

Variables, types, loops, branches, and subroutines are the basis of what might be called 

"traditional programming." However, as programs become larger, additional structure is needed 

to help deal with their complexity. One of the most effective tools that has been found is object-

oriented programming, which is discussed in the next section. 

 

A Brief History of Object-Oriented 

Programming  

SIMULA was the first object language. As its name suggests it was used to create simulations. 

Alan Kay, who was at the University of Utah at the time, liked what he saw in the SIMULA 

language. He had a vision of a personal computer that would provide graphics-oriented 

applications and he felt that a language like SIMULA would provide a good way for non-

specialists to create these applications. He sold his vision to Xerox Parc and in the early 1970s, a 

team headed by Alan Kay at Xerox Parc created the first personal computer called the 

Dynabook. Smalltalk was the object-oriented language developed for programming the 

Dynabook. It was a simulation and graphics-oriented programming language. Smalltalk exists to 

this day although it is not widely used commercially.  

The idea of object-oriented programming gained momentum in the 1970s and in the early 1980s 

Bjorn Stroustrup integrated object-oriented programming into the C language. The resulting 

language was called C++ and it became the first object-oriented language to be widely used 

commercially.  



In the early 1990s a group at Sun led by James Gosling developed a simpler version of C++ 

called Java that was meant to be a programming language for video-on-demand applications. 

This project was going nowhere until the group re-oriented its focus and marketed Java as a 

language for programming Internet applications. The language has gained widespread popularity 

as the Internet has boomed, although its market penetration has been limited by its inefficiency.  

Objects  

Object-oriented programming is first and foremost about objects. Initially object-oriented 

languages were geared toward modeling real world objects so the objects in a program 

corresponded to real world objects. Examples might include:  

1. Simulations of a factory floor--objects represent machines and raw materials  

2. Simulations of a planetary system--objects represent celestial bodies such as planets, 

stars, asteroids, and gas clouds  

3. A PC desktop--objects represent windows, documents, programs, and folders  

4. An operating system--objects represent system resources such as the CPU, memory, 

disks, tapes, mice, and other I/O devices  

The idea with an object is that it advertises the types of data that it will store and the types of 

operations that it allow to manipulate that data. However, it hides its implementation from the 

user. For a real world analogy, think of a radio. The purpose of a radio is to play the program 

content of radio stations (actually translate broadcast signals into sounds that humans can 

understand). A radio has various dials that allow you to control functions such as the station you 

are tuned to, the volume, the tone, the bass, the power, and so on. These dials represent the 

operations that you can use to manipulate the radio. The implementation of the radio is hidden 

from you. It could be implemented using vacuum tubes or solid state transistors, or some other 

technology. The point is you do not need to know. The fact that the implementation is hidden 

from you allows radio manufacturers to upgrade the technology within radios without requiring 

you to relearn how to use a radio.  

The idea is the same with objects. An object advertises the set of functions it will perform for 

you but does not reveal its implementation. Think of it as a black box. For example, think of the 

objects on a desktop. For simplicity think of two types of objects, a document and a program. A 

document contains data and a program contains executable statements. The desktop needs some 

functions to manipulate these objects. For example, it needs to be able to copy, cut, and paste 

these objects. It does not care how these objects are implemented. It just needs them to perform 

those three functions. Consequently both documents and programs provide functions that allow 

them to be copied, cut, and pasted.  

As another example, consider a stack. A stack provides a set of operations such as push, pop, 

isempty, and top. If the stack is implemented as an object, its implementation will be hidden 

from the program. It may be implemented as an array, a queue, or some other data structure. The 

program does not need to know how the array is implemented. Its only concern is that the stack 

provide the specified operations and that the operations provide the desired behavior.  



The set of operations provided by an object is called its interface. The interface defines both the 

names of the operations and the behavior of these operations. In essence the interface is a 

contract between the object and the program that uses it. The object guarantees that it will 

provide the advertised set of operations and that they will behave in a specified fashion. Any 

object that adheres to this contract can be used interchangeably by the program. Hence the 

implementation of an object can be changed without affecting the behavior of a program. For 

example, we can replace a stack object that is implemented as an array with a stack object that is 

implemented as a queue without affecting the behavior of the program.  

Classes  

An object is not much good if each one must be custom crafted. For example, radios would not 

be nearly as prevalent if each one was handcrafted. What is needed is a way to provide a 

blueprint for an object and a way for a "factory" to use this blueprint to mass produce objects. 

Classes provide this mechanism in object-oriented programming. A class is a factory that is able 

to mass produce objects. The programmer provides a class with a blueprint of the desired type of 

object. A "blueprint" is actually composed of:  

1. A declaration of a set of variables that the object will possess,  

2. A declaration of the set of operations that the object will provide, and  

3. A set of function definitions that implements each of these operations.  

The set of variables possessed by each object are called instance variables. The set of operations 

that the object provides are called methods. For most practical purposes, a method is like a 

function.  

When a program wants a new instance of an object, it asks the appropriate class to create a new 

object for it. The class allocates memory to hold the object's instance variables and returns the 

object to the program. Each object knows which class created it so that when an operation is 

requested for that object, it can look up in the class the function that implements that operation 

and call that function.  

Inheritance  

To motivate inheritance, think of a radio alarm clock. A radio alarm clock has all of the functions 

of a radio plus additional functions to handle the alarm clock. If we adopt the radio's interface for 

the radio alarm clock, then someone who knows how to operate a radio will also know how to 

operate the radio portion of the radio alarm clock. Hence, rather than designing the radio alarm 

clock from scratch, we can extend or inherit the interface defined by the radio. Of course, we can 

also use the existing implementation for a radio and extend it to handle the alarm clock 

functions.  

In object-oriented programming, Inheritance means the inheritance of another object's interface, 

and possibly its implementation as well. Inheritance is accomplished by stating that a new class 



is a subclass of an existing class. The class that is inherited from is called the superclass. The 

subclass always inherits the superclass's complete interface. It can extend the interface but it 

cannot delete any operations from the interface. The subclass also inherits the superclass's 

implementation, or in other words, the functions that implement the superclass's operations. 

However, the subclass is free to define new functions for these operations. This is called 

overriding the superclass's implementation. The subclass can selectively pick and choose which 

functions it overrides. Any functions that are not overridden are inherited.  

There is a great deal of debate about how to use inheritance. In particular, the debate swirls about 

whether inheritance should be used when you want to inherit an interface or whether it should be 

used when you want to inherit implementation. For example, suppose that you want to define a 

search object that stores (key, value) pairs and allows values to be looked up by providing their 

keys. More precisely, let us say that the search object supports the following operations:  

 insert: Adds a (key, value) pair to the object.  

 delete: Deletes a (key, value) pair from the object.  

 lookup: Given a key retrieves the value associated with that key from the object.  

Later we decide that we want a new object that allows us to traverse the (key, value) pairs in 

sorted order. The new object should support the above operations plus two additional operations, 

rewind that puts us back to the beginning, and next that returns the next (key, value) pair. Since 

the new object supports all of the operations of the original search object, we can make the new 

object inherit the original object's interface. This is an example of interface inheritance.  

To give an example of implementation inheritance, suppose that we want to implement the 

original search object using a binary search tree. The binary search tree probably already has an 

implementation for these three operations but it may not use these names for the operations. If 

we wanted to inherit the binary tree's implementation, we would make the search object be a 

subclass of the binary tree. We could then make the insert, delete, and lookup operations call the 

appropriate binary tree operations. Of course, we could also scrap our proposed interface and use 

the names of the binary tree interface instead.  

Does something seem wrong with this picture? Well, remember that an object is supposed to 

hide its implementation and that it should be interchangeable with other objects that implement 

the same interface. We can't very well scrap the interface and use the binary tree's interface 

because that would tie the interface to the binary tree's interface. So we should hold firm on our 

originally proposed interface. However, there's another problem. By making the search object 

inherit from the binary tree, we've also made its implementation dependent on the binary tree.  

Hopefully the above example shows why implementation inheritance may not be a good idea. In 

general I've found that inheritance should be used only when you want to inherit an interface. If 

it so happens that the implementation you get can be also be used, well and good. There are other 

ways to re-use implementation and we will discuss those later in the course.  

Abstract Data Types  



Objects provide an ideal mechanism for implementing abstract data types. An abstract data type 

is:  

1. A type of data, and  

2. A set of operations for manipulating that data.  

Examples of abstract data types include stacks, trees, and hash tables. The reason for the word 

"abstract" is that an abstract data type defines only the set of operations it supports (i.e., its 

interface). It does not define an implementation. In order to make the data type concrete one 

must provide an implementation.  

An object is a nice implementation vehicle for abstract data types since the data stored by the 

object can represent the abstract data type's data and the object's interface can represents the 

abstract data type's set of operations.  

Execution Model  

One of the original purposes for object languages was to model applications that have multiple 

objects that may be operating simultaneously. For example, the machines on a factory floor 

operate simultaneously. In an operating system the various input devices, such as disks, the 

keyboard, and the mouse, may be operating simultaneously. In a computer game various players, 

either human or computer-generated, may be operating simultaneously.  

These applications all have something in a common--they do not have a single thread of control. 

Instead control is distributed throughout the application. At any given moment multiple objects 

may want to perform some action. Conventional imperative languages like C have trouble 

modeling this type of application because they have a single thread of control. Object languages 

solved this problem by making everything an object and having control reside within each 

object. That is, at any given moment multiple objects could be executing an operation (at least 

this is the conceptual model--a computer with a sequential processor might simulate this model 

by interleaving the execution of the operations). Objects would communicate with one another 

by passing messages. A message is simply an invocation of an operation in another object. For 

example, an operating system might queue input events arriving from various input devices. 

Each input device might be represented as an object and the input event queue might be 

represented as an object. Each time an input device receives an input event, it would invoke the 

operation on the event queue that adds an input event to the queue.  

Smalltalk and Java are two well known examples of this "everything is an object" concept. They 

are also well suited for modeling distributed responsibility. Unfortunately, not every application 

needs to have distributed responsibility and that is where these object-oriented languages run into 

problems. People try to force this model onto applications that are more naturally modeled using 

a single thread of control. When this happens, programmers, especially programmers learning 

object-oriented programming, get confused.  



In this course we will use C++ which has a different execution model. It retains the notion of a 

central thread of control. Objects provide services to the central thread of control. For example, a 

stack object provides a stack service. We will primarily use objects to implement abstract data 

types. Using objects in this way will give us the advantages of data encapsulation and code re-

use. Data encapsulation means that the implementation of an object is hidden and hence we can 

interchange objects with different implementations but the same interface. Code re-use means 

that we can use the same object in different applications, so we don't have to write the code 

twice.  

The Modern User Interface 

 

WHEN COMPUTERS WERE FIRST INTRODUCED, ordinary people -- including most 

programmers -- couldn't get near them. They were locked up in rooms with white-coated 

attendants who would take your programs and data, feed them to the computer, and return the 

computer's response some time later. When timesharing -- where the computer switches its 

attention rapidly from one person to another -- was invented in the 1960s, it became possible for 

several people to interact directly with the computer at the same time. On a timesharing system, 

users sit at "terminals" where they type commands to the computer, and the computer types back 

its response. Early personal computers also used typed commands and responses, except that 

there was only one person involved at a time. This type of interaction between a user and a 

computer is called a command-line interface. 

Today, of course, most people interact with computers in a completely different way. They use a 

Graphical User Interface, or GUI. The computer draws interface components on the screen. The 

components include things like windows, scroll bars, menus, buttons, and icons. Usually, a 

mouse is used to manipulate such components or, on "touchscreens," your fingers. Assuming that 

you have not just been teleported in from the 1970s, you are no doubt already familiar with the 

basics of graphical user interfaces! 

A lot of GUI interface components have become fairly standard. That is, they have similar 

appearance and behavior on many different computer platforms including Mac OS, Windows, 

and Linux. Java programs, which are supposed to run on many different platforms without 

modification to the program, can use all the standard GUI components. They might vary a little 

in appearance from platform to platform, but their functionality should be identical on any 

computer on which the program runs. 

Shown below is an image of a very simple Java program that demonstrates a few standard GUI 

interface components. When the program is run, a window similar to the picture shown here will 

open on the computer screen. There are four components in the window with which the user can 

interact: a button, a checkbox, a text field, and a pop-up menu. These components are labeled. 

There are a few other components in the window. The labels themselves are components (even 

though you can't interact with them). The right half of the window is a text area component, 

which can display multiple lines of text. A scrollbar component appears alongside the text area 

when the number of lines of text becomes larger than will fit in the text area. And in fact, in Java 

terminology, the whole window is itself considered to be a "component." 



 

(If you would like to run this program, the source code, GUIDemo.java, as well as a compiled 

program, GUIDemo.jar, are available on line. For more information on using this and other 

examples from this textbook, see Section 2.6.) 

Now, Java actually has two complete sets of GUI components. One of these, the AWT or 

Abstract Windowing Toolkit, was available in the original version of Java. The other, which is 

known as Swing, was introduced in Java version 1.2, and is used in preference to the AWT in 

most modern Java programs. The program that is shown above uses components that are part of 

Swing.  

When a user interacts with GUI components, "events" are generated. For example, clicking a 

push button generates an event, and pressing return while typing in a text field generates an 

event. Each time an event is generated, a message is sent to the program telling it that the event 

has occurred, and the program responds according to its program. In fact, a typical GUI program 

consists largely of "event handlers" that tell the program how to respond to various types of 

events. In this example, the program has been programmed to respond to each event by 

displaying a message in the text area. In a more realistic example, the event handlers would have 

more to do. 

The use of the term "message" here is deliberate. Messages, as you saw in the previous section, 

are sent to objects. In fact, Java GUI components are implemented as objects. Java includes 

many predefined classes that represent various types of GUI components. Some of these classes 

are subclasses of others. Here is a diagram showing just a few of Swing's GUI classes and their 

relationships: 

http://math.hws.edu/javanotes/source/chapter1/GUIDemo.java
http://math.hws.edu/javanotes/jars/chapter1/GUIDemo.jar
http://math.hws.edu/javanotes/c2/s6.html
http://math.hws.edu/javanotes/c1/s5.html


 

Don't worry about the details for now, but try to get some feel about how object-oriented 

programming and inheritance are used here. Note that all the GUI classes are subclasses, directly 

or indirectly, of a class called JComponent, which represents general properties that are shared 

by all Swing components. In the diagram, two of the direct subclasses of JComponent 

themselves have subclasses. The classes JTextArea and JTextField, which have certain behaviors 

in common, are grouped together as subclasses of JTextComponent. Similarly JButton and 

JToggleButton are subclasses of JAbstractButton, which represents properties common to both 

buttons and checkboxes. (JComboBox, by the way, is the Swing class that represents pop-up 

menus.)  

Just from this brief discussion, perhaps you can see how GUI programming can make effective 

use of object-oriented design. In fact, GUIs, with their "visible objects," are probably a major 

factor contributing to the popularity of OOP. 

The Internet and Beyond 

 

COMPUTERS CAN BE CONNECTED together on networks. A computer on a network can 

communicate with other computers on the same network by exchanging data and files or by 

sending and receiving messages. Computers on a network can even work together on a large 

computation. 

Today, millions of computers throughout the world are connected to a single huge network 

called the Internet. New computers are being connected to the Internet every day, both by 

wireless communication and by physical connection using technologies such as DSL, cable 

modems, and Ethernet. 

There are elaborate protocols for communication over the Internet. A protocol is simply a 

detailed specification of how communication is to proceed. For two computers to communicate 

at all, they must both be using the same protocols. The most basic protocols on the Internet are 



the Internet Protocol (IP), which specifies how data is to be physically transmitted from one 

computer to another, and the Transmission Control Protocol (TCP), which ensures that data sent 

using IP is received in its entirety and without error. These two protocols, which are referred to 

collectively as TCP/IP, provide a foundation for communication. Other protocols use TCP/IP to 

send specific types of information such as web pages, electronic mail, and data files. 

All communication over the Internet is in the form of packets. A packet consists of some data 

being sent from one computer to another, along with addressing information that indicates where 

on the Internet that data is supposed to go. Think of a packet as an envelope with an address on 

the outside and a message on the inside. (The message is the data.) The packet also includes a 

"return address," that is, the address of the sender. A packet can hold only a limited amount of 

data; longer messages must be divided among several packets, which are then sent individually 

over the net and reassembled at their destination. 

Every computer on the Internet has an IP address, a number that identifies it uniquely among all 

the computers on the net. (Actually, the claim about uniqueness is not quite true, but the basic 

idea is valid, and the full truth is complicated.) The IP address is used for addressing packets. A 

computer can only send data to another computer on the Internet if it knows that computer's IP 

address. Since people prefer to use names rather than numbers, most computers are also 

identified by names, called domain names. For example, the main computer of the Mathematics 

Department at Hobart and William Smith Colleges has the domain name math.hws.edu. (Domain 

names are just for convenience; your computer still needs to know IP addresses before it can 

communicate. There are computers on the Internet whose job it is to translate domain names to 

IP addresses. When you use a domain name, your computer sends a message to a domain name 

server to find out the corresponding IP address. Then, your computer uses the IP address, rather 

than the domain name, to communicate with the other computer.) 

The Internet provides a number of services to the computers connected to it (and, of course, to 

the users of those computers). These services use TCP/IP to send various types of data over the 

net. Among the most popular services are instant messaging, file sharing, electronic mail, and the 

World-Wide Web. Each service has its own protocols, which are used to control transmission of 

data over the network. Each service also has some sort of user interface, which allows the user to 

view, send, and receive data through the service. 

For example, the email service uses a protocol known as SMTP (Simple Mail Transfer Protocol) 

to transfer email messages from one computer to another. Other protocols, such as POP and 

IMAP, are used to fetch messages from an email account so that the recipient can read them. A 

person who uses email, however, doesn't need to understand or even know about these protocols. 

Instead, they are used behind the scenes by computer programs to send and receive email 

messages. These programs provide the user with an easy-to-use user interface to the underlying 

network protocols. 

The World-Wide Web is perhaps the most exciting of network services. The World-Wide Web 

allows you to request pages of information that are stored on computers all over the Internet. A 

Web page can contain links to other pages on the same computer from which it was obtained or 

to other computers anywhere in the world. A computer that stores such pages of information is 



called a web server. The user interface to the Web is the type of program known as a web 

browser. Common web browsers include Internet Explorer, Firefox, Chrome, and Safari. You 

use a Web browser to request a page of information. The browser sends a request for that page to 

the computer on which the page is stored, and when a response is received from that computer, 

the web browser displays it to you in a neatly formatted form. A web browser is just a user 

interface to the Web. Behind the scenes, the web browser uses a protocol called HTTP 

(HyperText Transfer Protocol) to send each page request and to receive the response from the 

web server.  

 

Now just what, you might be thinking, does all this have to do with Java? In fact, Java is 

intimately associated with the Internet and the World-Wide Web. When Java was first 

introduced, one of its big attractions was the ability to write applets. An applet is a small 

program that is transmitted over the Internet and that runs on a web page. Applets make it 

possible for a web page to perform complex tasks and have complex interactions with the user. 

Alas, applets have suffered from a variety of security problems, and fixing those problems has 

made them more difficult to use. Applets have become much less common on the Web, and in 

any case, there are other options for running programs on Web pages. 

But applets are only one aspect of Java's relationship with the Internet. Java can be used to write 

complex, stand-alone applications that do not depend on a Web browser. Many of these 

programs are network-related. For example many of the largest and most complex web sites use 

web server software that is written in Java. Java includes excellent support for network protocols, 

and its platform independence makes it possible to write network programs that work on many 

different types of computer. You will learn about Java's network support in Chapter 11.  

Its support for networking is not Java's only advantage. But many good programming languages 

have been invented only to be soon forgotten. Java has had the good luck to ride on the coattails 

of the Internet's immense and increasing popularity. 

 

As Java has matured, its applications have reached far beyond the Net. The standard version of 

Java already comes with support for many technologies, such as cryptography and data 

compression. Free extensions are available to support many other technologies such as advanced 

sound processing and three-dimensional graphics. Complex, high-performance systems can be 

developed in Java. For example, Hadoop, a system for large scale data processing, is written in 

Java. Hadoop is used by Yahoo, Facebook, and other Web sites to process the huge amounts of 

data generated by their users. 

Furthermore, Java is not restricted to use on traditional computers. Java can be used to write 

programs for many smartphones (though not for the iPhone). It is the primary development 

language for Android-based devices. (Some mobile devices use a version of Java called Java ME 

("Mobile Edition"), but Android uses Google's own version of Java and does not use the same 

http://math.hws.edu/javanotes/c11/index.html


graphical user interface components as standard Java.) Java is also the programming language 

for the Amazon Kindle eBook reader and for interactive features on Blu-Ray video disks. 

At this time, Java certainly ranks as one of the most widely used programming languages. It is a 

good choice for almost any programming project that is meant to run on more than one type of 

computing device, and is a reasonable choice even for many programs that will run on only one 

device. It is probably still the most widely taught language at Colleges and Universities. It is 

similar enough to other popular languages, such as C, C++, and Python, that knowing it will give 

you a good start on learning those languages as well. Overall, learning Java is a great starting 

point on the road to becoming an expert programmer. I hope you enjoy the journey! 

 


